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General Properties of the Liouville Operator
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We study the self-adjointness of the Liouvillian of a symmetric operator. We also
discuss some cases of the spectrum of the Liouville operator of a self-adjoint
Hamiltonian with purely continuous singular spectrum. The presence of an
absolutely continuous part for the spectrum of Liouvillians corresponding to
Hamiltonians with purely continuous singular spectrum shows that quantum
theory in Hilbert and Liouville spaces is not equivalent.

1. INTRODUCTION

In the present paper, we study certain general properties of the quantum

Liouville operator. The Liouville operator plays an important role in classical
and quantum statistical mechanics, since it provides the law of evolution of

states and observables (Prigogine, 1962; Reichl, 1980). In both cases, there

exists a formal relation between the Liouville operator L and its corresponding

Hamiltonian H, which is given by L r 5 {H, r }, where r denotes the state.

Here, the brackets denote the Poisson brackets for the classical case and the

commutator times i " in the quantum case.
It is well known that the Liouville operator L (also called the Liouvillian)

corresponding to an essentially self-adjoint Hamiltonian H is also e.s.a.

(Spohn, 1976; Reed and Simon, 1972). Moreover, the spectrum of L is given

by the spectrum of H according to the following formula:

s ( L ) 5 s (H ) 2 s (H ) (1)

(In this paper, s (A ) will represent the spectrum of the operator A.) Also, it

is obvious that the set of eigenvalues of L is given by all the differences
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between eigenvalues of H. Spohn (1976) gave a formula to obtain the continu-

ous and singular spectrum of L , given the eigenvalues as well as the continuous

and singular spectrum of H. Part of the contents of the present paper are
motivated by Spohn (1976).

This paper is divided into two sections. In the first part, we present

some extra results concerning the formal Liouvillian of a symmetric (e.s.a.

or not) operator. First of all, it seems natural that different self-adjoint exten-

sions of the same symmetric non-e.s.a. operator have different Liouvillians.

We start the next section by giving a formal proof of this fact, after giving
a definition of the formal Liouvillian for every symmetric operator. We prove

even more; we give a necessary and sufficient condition for the Liouvillians

of two self-adjoint operators to be identical. In addition, we show that the

formal Liouvillian of a symmetric operator A always has self-adjoint exten-

sions, even if A does not have self-adjoint extensions.

The last section is devoted to some important comments on the singular
spectrum of the Liouvillian of a self-adjoint operator. This has been motivated

by Spohn (1976) since, the way in which the author constructs the singular

spectrum of the Liouvillian of a given Hamiltonian is wrong. Therefore, we

start this second part by showing that the arguments given in his proof are

not correct. This fosters further investigations which may have dramatic
consequences in the interpretation of quantum mechanics in Liouville space.

The key point is that the complex difference s sc(A) 2 s sc(A) of the

singular spectrum of a self-adjoint operator A does not need to be a singular set

of zero Lebesgue measure. The continuous singular spectrum of an operator A
is characterized by the fact that the measure ^ c | E (x) c & , where E (x) is the

spectral measure of A, is continuous singular with respect to the Lebesgue
measure whenever c P *sc, the continuous singular subspace of the Hilbert

space. One may find situations in which a self adjoint operator has only a

singular continuous spectrum of the Cantor form, but the spectrum of the

corresponding Liouvillian is an interval of the real line. Another striking

possibility is that the absolutely continuous spectrum of the Liouvillian of a

self-adjoint operator A may be contained in the set s sc(A) 2 s sc(A). These
results have fostered research concerning the relation between the spectrum

of an operator and the spectrum of its corresponding Liouvillian.

Bas and Pavlov (1995) found an example of a Hamiltonian with purely

singular spectrum for which the spectrum of its Liouvillian has an absolutely

continuous component. Here, we generalize this result in the sense that it is

always possible to find a Hamiltonian with purely continuous singular spec-
trum concentrated on a set of arbitrarily small Hausdorff dimension for which

the spectrum of the Liouvillian has an absolutely continuous component.

We make the proof of this statement in the language of spectral measures

(Berezanski, 1968; Dalecki and Krein, 1965; Iorio, 1978).
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The result by Bas and Pavlov and ours show their importance in the

context of scattering theory. It is a general belief that scattering theory is

equivalent on both Hilbert space and Liouville space (Spohn, 1976; Prugo-
vecki, 1981). However, one can see that it is always possible to construct

Hamiltonians for which no scattering states may exist, because of the absence

of absolutely continuous spectrum, and nonetheless their corresponding Liou-

villians indeed have scattering states. This fact shows the nonequivalence

between scattering on Hilbert and on Liouville spaces, contrary to what is

usually accepted (Prugovecki, 1981).

2. SELF-ADJOINTNESS OF THE FORMAL LIOUVILLIAN

Definition. Let A be a symmetric operator. We define its formal Liouvil-

lian as the closed symmetric operator defined as L A 5 A ^ I 2 I ^ A on the

Hilbert space * ^ *x, where *x denotes the dual space of * (usually

identified with *) and I is the identity operator on *.
Next, we present two interesting results concerning Liouvillians. The

former is very intuitive, but it seems to confirm the equivalence between

Hilbert and Liouville spaces.

Proposition. Let A and B be two self-adjoint operators on *. Let L A

and L B be their respective Liouvillians. Then, L A 5 L B if and only if A 5 B
1 a I, where a is a real constant.

Proof. Let c and w be two arbitrary elements in *. Then,

e 2 it L A c ^ w 5 e 2 itA c ^ e 1 itA w and e 2 it L B c ^ w 5 e 2 itB c ^ e 1 itB w

(2)

Now, assume that the two vectors in (2) are the same for any given pair c ,

w . Then, one has (Weidmann, 1980)

e 2 itA c 5 c (t)e 2 itB c ; e 1 itA w 5 c (t) 2 1e 1 itB w (3)

A very important point is that c(t) must be the same for every vector in *
and for a given value of t. To see this, we keep c fixed and let w be arbitrary

in *x.

Due to the arbitrariness of c and w , one has

e 2 itA 5 c(t)e 2 itB (4)

From (4), one immediately gets that c (t) 5 e i a (t), where a (t) is a real function

of R . Using this form for c (t) in (4) with e 2 i(t 1 t )A, one easily gets that

e i a (t 1 t ) 5 e i( a (t) 1 a ( t )) (5)

Consider now
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U (t): 5 e i a (t ) 5 e 2 itAe itB (6)

With the aid of (5) one immediately shows that U (t) is a unitary group with

parameter t. It is also strongly continuous with respect to the variable t on

*. By the Stone theorem, there must exist a self-adjoint operator S such that

U (t) 5 e iSt 5 e i a (t ) (7)

Let $(S) be the domain of S. Let c P $(S). Then, the following limit exists:

lim
t ª0

U( t ) 2 I

t
c 5 iS c 5 lim

t ª0

e i a ( t ) 2 1

t
c (8)

Therefore,

lim
t ª0

e i a ( t ) 2 1

t
(9)

exists. This limit is a complex number, which we call i a . Therefore, iS c 5
i a c for all c P $(S). Since $(S) is dense in *, one has that S c 5 a c for
all c P * Þ S 5 a I. Since S is self-adjoint, a is real. Then, one has

e 2 itA 5 e i a tI e 2 itB 5 e 2 it(B 2 a I) Þ A 5 B 2 a I (10)

The converse is obvious. n

As a corollary, one can answer the following question: Let A be a
symmetric, densely defined operator with equal deficiency indices different

from zero. Do its self-adjoint extensions have the same Liouvillian? After

the previous theorem, one sees that the answer is negative. The proof of this

statement is trivial.

Our next question is the following: Being given a symmetric operator
on * having nonequal deficiency indices (and therefore without self-adjoint

extensions), what one can say about the deficiency indices of its Liouvillian?

The answer is given by the next result.

Proposition. Let H be a maximal symmetric operator with different
deficiency indices. Then its corresponding Liouvillian has both deficiency

indices equal to ` .

Proof. It is a consequence of the following result (Dunford and Schwartz,
1963). Let T be a maximal symmetric operator on *. Then * can be decom-

posed into an orthogonal direct sum:

* 5 o
N

n 5 0

*n; N finite or infinite (11)

of subspaces invariant under T and T ² , such that:
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(i) The restriction T0 of T to *0 is self-adjoint.

(ii) For n Þ 0, there exists a unitary operator Un from *n onto L 2( R +)

such that if Tn denotes the restriction of T to *n , the operator UnTnU
2 1
n is

the operator 6 iD, defined as

$(D) 5 { f P L 2( R +) / f (x) is absolutely continuous,

f 8 (x) P L 2( R +); f (0) 5 0} Df(x) 5 f 8(x) 5
d

dx
f (x) (12)

We have 1 iD for all n if the positive (n+) deficiency index of T is zero and

2 iD for all n if the negative deficiency index of T is zero.

Now, consider the decomposition of * given in (11). Take n Þ 0.

Consider the orthogonal projection Pn: * j *n and 3n 5 Pn ^ Pn. Now, define

L n 5 3n L 3n 5 Pn ^ Pn(H ^ I 2 I ^ H ) Pn ^ Pn

5 (PnHPn) ^ Pn 2 Pn ^ (PnHPn) (13)

Since H leaves *n invariant, PnHPn is the restriction of H to *n. We know

that this restriction is unitarily equivalent to either 1 iD or 2 iD on L 2( R +).
Thus, L n is unitarily equivalent to Kn 5 6 i (D ^ I 2 I ^ D). Since (Weidman,

1980) K ²
n . D ² ^ I 2 I ^ D ² , the equations (K ²

n 6 iI ) c 5 0 have at least

the following solutions:

c a (x, y) 5 Ae a xe a ye 7 iy (14)

where a , 0. These solutions belong to L 2( R 1 3 R +) (where R + 5 [0, ` )).

Since solutions with different values of a are linearly independent, one
concludes that the deficiency indices of kn are both infinite. Therefore, we

conclude that the deficiency indices of L n are both infinite. Since L is (the

closure of) the orthogonal sum of the L n , this implies that L has both deficiency

indices equal to ` . n

Remark. Since we define the Liouville space as * ^ * 3 , one may be

tempted to define the Liouvillian of a given symmetric operator H as the

closure of L 5 H ^ I 2 I ^ H ² . However, if H were not essentially self-
adjoint, then L would not be even symmetric. To prove it, take c 1, c 2 P
$(H ) and w 1, w 2 P $(H ² ), all different from zero, and assume that L is

symmetric. Then, one has

^ H c 1 ^ w 1 2 c 1 ^ H ² w 1 | c 2 ^ w 2 &

2 ^ c 1 ^ w 1 | H c 2 ^ w 2 2 c 2 ^ H ² w 2 & 5 0 (15)

This implies that
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^ H c 1 ^ w 1 | c 2 ^ w 2 & 2 ^ c 1 ^ H ² w 1 | c 2 ^ w 2 &

5 ^ c 1 ^ w 1 | H c 2 ^ w 2 & 2 ^ c 1 ^ w 1 | c 2 ^ H ² w 2 & (16)

or

^ H c 1 | c 2 & ^ w 1 | w 2 & 2 ^ c 1 | c 2 & ^ H ² w 1 | w 2 & 5 ^ c 1 | H c 2 & ^ w 1 | w 2 &

2 ^ c 1 | c 2 & ^ w 1 | H ² w 2 & (17)

Since H is symmetric, this equation shows that H ² is also symmetric and

hence that H is essentially self-adjoint, which is a contradiction. n

3. CANTOR SPECTRUM

We would like to consider some interesting, even paradoxical, properties

of the spectrum of the Liouvillian corresponding to an operator with a singular

continuous spectrum. The additional motivation for these consideration is a

partially incorrect paper of Spohn (1976) in which the author describes
connections between different parts of the spectrum of a Hamiltonian, i.e.,

absolutely continuous, singular continuous, and point spectrum, and the cor-

responding spectra of the Liouvillian.

The interest of this discussion goes beyond the Spohn result. One of its

consequences has been to show the nonequivalence between the Hilbert space
and the Liouville space descriptions of quantum mechanics, as mentioned in

the Introduction. This may have dramatic consequences from the point of

view of the scattering theory and resonance behavior that are under pres-

ent investigation.

In Spohn (1976) it is proved that s ( L ) 5 s (H ) 2 s (H ), where s (A )

stands for the spectrum of the operator A. This result is not new, since a
more general one was already known (Reed and Simon, 1972). Moreover,

the same paper gives a similar characterization for absolutely continuous,

singular continuous, and point spectra. What is wrong there is the proof that

s ( L )sc 5 s (H )sc 2 s (H )sc. The argument used there is that if s (H )sc is the

set of Lebesgue measure 0 (where sc stands for singular continuous), then

the complex difference s (H )sc 2 s (H )sc is also a set of the Lebesgue measure
0. This is, however, not true, as we shall show below.

To see it, let us consider a Hamiltonian operator H for which s (H ) is

a Cantor set. For example, there is an absolutely summable sequence {an}

such that the spectrum of the Hamiltonian

H 5 2
d 2

dx2 1 o
`

n 5 0

an cos(x2 2 n) (18)

is the Cantor set (Bellisard, 1982, and references therein). Suppose that s (H )

5 C, where C is the Cantor set on the interval [0, 1]. According to the
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general property of spectra of functions of the Hamiltonian (Reed and Simon,

1972) we have formula (1).

However, according to a theorem of Steinhaus (1917) we have

C 2 C 5 [ 2 1, 1] (19)

i.e., the complex difference of two Cantor sets covers the whole interval and
is thus the set of nonzero Lebesgue measure, contrary to what is claimed in

Spohn (1976). This property of the Cantor set does not, however, imply that

the spectrum of the Liouvillian is absolutely continuous. To show this, let

us consider the devil’ s staircase distribution function F (x) on the Cantor set

C, which has constant value equal to k /2n (k is such that the fraction k /2n is

nonreducible) on each interval which is removed in the nth step of the
construction of the Cantor set (Billingsley, 1985). [The devil’ s staircase is

defined as follows: it is 1/2 on the interval (1/3,2/3), 1/4 on (1/9,2/9), 3/4

on (7/9,8/9), 1/8 on (1/27,2/27), 3/8 on (7/27, 8/27), 5/8 on (19/27, 20/27),

7/8 on (25/27, 26/27) and so on.]

It is well known and not difficult to check that F (x) is a nondecreasing
continuous function such that F (x) 5 0 for x # 0 and F (x) 5 1 for x $ 1.

We can show that F (x) is a spectral measure corresponding to a Hamiltonian.

Precisely speaking, the spectral theory for self-adjoint operators shows that

there exists a self-adjoint operator H on a Hilbert space * with the spec-

tral resolution

H 5 # s (H)

l dE l (20)

and an element h P * such that

F (x) 5 ^ Exh,h & for x P R (21)

Consider the Liouvillian, corresponding to this H which is defined on the

Hilbert tensor product * ^ * 3 and is given by

L 5 H ^ I 2 I ^ H (22)

L 5 # s (H) 2 s (H)

l d E l (23)

Then, one can show that E l can be represented as (see Appendix)

E l 5 #
`

2 `

(E l 1 m ^ I ) d (I ^ E m ) (24)

In particular,
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^ E l h ^ h, h ^ h & 5 #
`

2 `

^ E l 1 m h, h & 5 #
`

2 `

F ( l 1 m ) dF( m ) (25)

This implies that the function x j G ( 2 x), where

G (x): 5 ^ E xh ^ h, h ^ h & (26)

is a convolution of the function x j F ( 2 x) with x j F (x). By general

properties of the convolution the function, G (x) is continuous. We shall show
that it is, however, not absolutely continuous. In order to show this, let us

consider the Fourier±Stieltjes transform

FÃ(t) 5 #
1

0

e itx dF(x) (27)

Let us find the explicit expression for FÃ(t):

FÃ(t) 5 #
1

0

e itxdF(x) 5
1

2 #
1/3

0

e itxdF(3x) 1
1

2 #
1

2/3

e itxdF(3x 2 2)

5
1

2 #
1

0

e itx/3dF(x) 1
1

2 #
1

0

e itx/3 e it2/3 dF(x)

5
1

2
[1 1 e 2it/3] FÃ1 t

3 2
5

1

2
[1 1 e 2it/3]

1

2
[1 1 e 2it/32

] FÃ1 t

32 2 (28)

5 1 &
`

k 5 1

1

2k [1 1 e 2it/3] 2 FÃ(0)

On the first identity in the second row, we have used the fact that F (x)
satisfies the following functional equation of the De-Rham type (compare to

Tasaki et al., 1993

F (x) 5 5
1

2
F (3x), 0 # x ,

1

3

1

2
,

1

3
# x ,

2

3

1

2
F (3x 2 2) 1

1

2
,

2

3
# x # 1

(29)

One easily finds that FÃ(0) 5 1. Then we get the desired formula for FÃ(t):
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FÃ(t) 5 1 &
`

k 5 1
[1 1 e 2it/3] 2 (30)

Choosing tn 5 p 3n, we see that

FÃ(tn) 5 &
`

k 5 n 1 1

1

2
[1 1 e 2 p i/(3k 2 n)] 5 &

`

k 5 1

1

2
[1 1 e 2 p i/3k (31)

does not depend on n. Moreover, FÃ(tn) is nonzero. Indeed, taking n0 such

that p /3n , 1/2n, for n . n0, and using the equality P `
n 5 1 cos(x /2n) 5

(sin x)/x, we have

| FÃ(tn) | 5 &
`

k 5 1
cos

p
3k . &

n0

k 5 1
cos

p
3k &

`

k 5 n0 1 1
cos

1

2k

5 &
n0

k 5 1
cos

p
3k &

`

k 5 1
cos

2 2 n0

2k 5 2n0 sin
1

2n0 &
n0

k 5 1
cos

p
3k . 0 (32)

This means that the Fourier transform FÃ(t) does not converge to zero as t ª
` . The same is true for the Fourier transform GÃ(t) of G(x), because | GÃ(t) | 5
| FÃ(t) | 2. Therefore, in view of the Riemann Lebesgue lemma, F(x) as well as

G (x) cannot be absolutely continuous.

In fact more can be shown, namely that G (t) is a strictly monotonically

increasing and continuous function on the interval [ 2 1,1], although not

differentiable at any point.
The above example shows that the property of the spectrum being

singular should be interpreted as the property of spectral measures rather

than sets. This means that the spectrum of the Liouvillian need not be a thin

set in the sense of being a set of Lebesgue measure zero, even if this is true

for the Hamiltonian. To illustrate this point, let us consider a Hamiltonian

constructed in the following way: let A be a self-adjoint operator on a Hilbert
space *1, like the one considered above, having as (singular) spectrum the

Cantor set in the interval [0, 1], and let B be a self-adjoint operator on a

Hilbert space *2 having absolutely continuous spectrum [1/3 1 e , 2/3 2 e ],

e . 0. Then consider the operator H 5 A ^ I 1 I ^ B defined on the Hilbert

space * 5 *1 ^ *2. After Reed and Simon (1972) one gets

s (H ) 5 s (A ^ I ) 1 s (I ^ B) 5 s (A ) 1 s (B) (33)

Therefore the spectrum of H consists of two separate parts. Its singular part

has the Lebesgue measure zero and its absolutely continuous part has a
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positive measure. It turns out, however, that going to the corresponding

Liouvillian, we obtain that the continuous part of the spectrum is a proper

subset of the set s sc(H) 2 s sc(H).
The example that we have discussed in this section does not provide

us, however, with further information. For instance, one may ask whether in

this kind of situation the spectrum of the Liouvillian has an absolutely continu-

ous component so that its spectral measure is the sum of singular measures

plus absolutely continuous measures with respect to the Lebesgue measure.

With this idea in mind, Bas and Pavlov (1995) found an example of a
Hamiltonian with purely singular continuous spectrum having an absolutely

continuous component. Their construction is based on a paper by Levenberg

et al. showing that the convolution of two singular measures may yield the

Lebesgue measure on an interval of the real line.

Now, based on Levenberg et al. (1988), we shall show a stronger result.

Namely, we shall show that it is always possible to find a Hamiltonian which
has the purely singular spectral measure concentrated on a set of an arbitrary

small Hausdorff dimension.

The key point in the further construction is a result of which Levenberg

et al. (1988) shows that for a given Hausdorff measure x one can construct

two subsets E1 and E2 of the unit interval I 5 [0,1] such that

E1 1 E2 5 {x 1 y /x P E1; y P E2} 5 I (34)

and

x (E1) 5 x (E2) 5 0 (35)

Moreover, the natural probability measures m i supported on Ei , i 5 1, 2,

have the property that the convolution m 1 * m 2 is Lebesgue on I.
The term natural probability measure used above requires an explanation.

The sets Ei, i 5 1, 2, constructed in Levenberg et al. (1988) are nowhere-dense

Cantor-type sets, and therefore sets of zero Lebesgue measure, constructed by
removing consecutively some number of intervals. The whole procedure is

infinite, but on each step n we have sets Ei,n consisting of a finite number

of disjoint closed intervals of the same length. The corresponding natural

probability measure m i,n (i 5 1, 2) is defined as a measure on the Borel

subsets of I through its density

d m i, n(x) 5
1

| E i,n |
1Ei,n(x) dx (36)

where | E i,n | is the total length of all subintervals of Ei,n and 1Ei,n
(x) its character-
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istic function (indicator). Then m i are defined as limits of m i,n as n ª ` . Of

course the measures m i no longer have densities; they are both singular with

respect to the Lebesgue measure on I.
We should show that one can construct a Hamiltonian with a given

singular spectral measure. However, before doing it, let us introduce some

important facts concerning convolution of measures.

Let m 1, m 2 be two real measures, m 1 ^ m 2 its product, and m 1 * m 2 its

convolution. Recall that we define m 1 * m 2 as the composition of the product

m 1 ^ m 2 with the measurable map s: R 3 R ª R given by

s (x,y) 5 x 1 y (37)

Now, we make another construction that we call the anticonvolution of

m 1 and m 2, denoted by m 1 *
Å

m 2. This is the composition of the measure m 1

^ m 2 with the measurable map d: R 3 R ª R given by

d (x,y) 5 x 2 y (38)

Reflection of a Measure. Being given a real measure m , we define its

reflection as the composition of the measurable map r: R ª R

r (x) 5 2 x (39)

with m , so that

m Å 5 m C r (40)

Then, we have m Å (A ) 5 m ( 2 A).

Lemma. The reflection has the following properties:

(i) m 1 1 m 2 5 m Å 1 1 m Å 2.

(ii) ( m Å 1) 5 m .
(iii) m 1 * m 2 5 m 1 * m Å 2.

Proof. The proofs for (i) and (ii) are obvious. In order to show (iii), let

us define the (measurable) transformation t: R 3 R ª R 3 R

t (x, y) 5 (x, 2 y) (41)

We want to show first that

m 1 ^ m Å 2 5 ( m 1 ^ m 2) C t (42)

For that, we need only to show this identity for sets of the form A 3 B,

where A and B are measurable sets. Indeed



1652 Antoniou, Gadella, and Suchanecki

(( m 1 ^ m 2) C t)(A 3 B) 5 ( m 1 ^ m 2)t
2 1(A 3 B)

5 ( m 1 ^ m 2)(A 3 ( 2 B))

5 m 1(A ) m 2( 2 B) 5 m 1(A ) m Å 2(B)

5 m 1 ^ m Å 2(A 3 B) (43)

Therefore, taking any measurable set C, we have

m 1 * m 2(C ) 5 ( m 1 ^ m 2)d
2 1(C )

5 # # {(x,y):x 2 y P C}

d m 1 ^ m 2

5 # # t
2 1{(x,y):x 1 y P C}

d m 1 ^ m 2

5 # # {(x,y):x 1 y P C}

d m 1 ^ m Å 2

5 m 1 ^ m Å 2(s
2 1(C ))

5 m 1 * m Å 2(C ) n (44)

Now, take m 1 and m 2 two arbitrary singular measures on I such that m 1

* m 2 is the Lebesgue measure on the same interval. We know that these kinds
of objects exist due to the above result of Levenberg et al. (1988). Define

m 5 m 1 1 m Å 2, which is a singular measure with support E1 ø E2.

Now, it is easy to find a Hamiltonian with the desired spectral properties.

The simplest example of an operator with spectrum E1 ø E2 and m as spectral

measure is given by the multiplication operator

Hf (x) 5 xf (x) (45)

on the Hilbert space L 2(I, m ). Its spectral resolution

H 5 # s (H)

l dE l

can be given explicitly if we define projectors E l as the operators of multiplica-
tion by indicators 1[0, l ] (projectors on the spaces L 2 ([0, l ], m )). Then e [
1 is the corresponding cyclic vector and m ([0, l ]) 5 ^ E l e, e & .

The Liouvillian corresponding to H has the spectral projectors E l , and

the measure generated by ( E l e ^ e, e ^ e) is given by the convolution of

m and m Å . We have

m * m Å 5 ( m 1 1 m Å 2) * ( m 1 1 m Å 2)

5 ( m 1 1 m Å 2) * ( m Å 1 1 m 2)
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5 m 1 * m Å 2 1 m 1 * m 2 1 m Å 2 * m Å 1 1 m Å 2 * m 2

Here, m 1 * m 2 is an absolutely continuous measure by hypothesis. Because
m Å 2 * m Å 1 5 m Å 1 * m Å 2 and m Å 1, m Å 2 are reflections of m Å 1, m Å 2, then m Å 2 * m Å 1 is also

absolutely continuous. These two convolutions form the absolutely continuous

part of the spectral measure of the Liouvillian.

Thus, we have constructed a Hamiltonian with continuous singular spec-

trum supported on the nowhere-dense set (the interior of its closure is the
empty set) E1 ø E2 such that its Liouvillian has a nonempty, absolutely

continuous spectrum. This result justifies our claim that quantum theory on

Hilbert and Liouville spaces is not equivalent.

APPENDIX

In this Appendix, we wish to present the proof of formula (24), which

relates the spectral decomposition E l of L to the spectral decomposition E a

of H, where L 5 H ^ I 2 I ^ H. To do it, we use (2) in the following form

(Weidmann, 1980):

e i L t 5 e iHt ^ e 2 iHt (A.1)

Let h, g be vectors in the Hilbert space *. Then (A.1) implies that

(e i L th ^ g,h ^ g) 5 #
`

2 `

e i l t d( L l h ^ g, h ^ g) (A.2)

and

(e iHt ^ e 2 iHt(h ^ g), h ^ g))

5 (e iHth, h)(e 2 iHtg, g)

5 F # `

2 `

e i a t d (E a h, h) G F # `

2 `

e 2 i b t d (E b g, g) G
5 #

`

2 ` #
`

2 `

e i( a 2 b )t d (E a h, h) d (E b g, g) (A.3)

Writing a 2 b 5 l , we see that (A.3) is equal to

#
`

2 ` #
`

2 `

e i l t d (E l 1 b h,h) d (E b g,g) (A.4)

If the Fourier transform of two measures on R coincide, these measures must

be equal. Thus,
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( E l h ^ g, h ^ g 5 #
`

2 `

(E l 1 b h,h) d (E b g,g) (A.5)

This formula can be written analogously as

E l 5 #
`

2 `

(E l 1 b ^ I ) d (I ^ E b ) (A.6)

ACKNOWLEDGMENTS

The authors want to express their gratitude to Prof. B. S. Pavlov for

discussions and to Prof. I. Prigogine for his constant encouragement. Financial

support is also acknowledged through ESPRIT Contract 21042 CTIAC, Span-
ish DGICYT project number PB 95-0719, and Junta de Castilla y LeoÂn Grant

PC 1/196.

REFERENCES

Bas, L., and Pavlov, B. S. (1995). Absolute continuity of convolutions of singular measures

and localisation problems, ULB Preprint.

Bellisard, J. (1982). Schroedinger operators with almost periodic potential: An overview, in

Lecture Notes in Physics, vol. 153, pp. 356±363.

Berezanski, J. M. (1968). Expansions in Eigenfunctions of Self Adjoint Operators , American

Mathematical Society, Providence, Rhode Island.

Billingsley, P. (1985). Probability and Measure , Wiley, New York.

Yu. L., Daleckii, and Krein, M. G. (1965). AMS Translations, 17, 1.

Dunford, N., and Schwartz, J. T. (1963). Linear Operators. Part II: Spectral Theory, Wiley-

Interscience, New York.

Iorio, R. J. (1978). Communications in Mathematical Physics, 62, 201.

Levenberg, N., Martin, G. J., Shields, A. L., and Zdravokovska, S. (1988). Proceedings of the

American Mathematical Society, 104 , 419.

Prigogine, I. (1962). Non Equilibrium Statistical Mechanics , Wiley, New York.

Prugovecki, E. (1981), Quantum Mechanics on Hilbert Space, Academic Press, 1981.

Reichl, L. E. (1980). A Modern Course in Statistical Mechanics , University of Texas Press,

Austin, Texas.

Reed, M., and Simon, B. (1972). Functional Analysis, Academic Press, New York.

Spohn, H. (1976). Journal of Mathematical Physics, 17, 56.

Steinhaus, H. (1917). A new property of the Cantor set [in Polish], Wektor, 7, 1±3.

Tasaki, S., Suchanecki, Z., and Antoniou, I. (1993). Physics Letters A, 179, 103±110.

Weidmann, H. (1980). Linear Operators in Hilbert Space , Springer-Verlag, Berlin.


